The Mac @TheMac
17 March, 01:52
So are they spraying nanoparticle viruses that are magnetized by polarization?

Think about it.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
Truth Seeker 4444 donated @TruthSeeker4444
17 March, 03:15
In response The Mac to his Publication
Something like this?

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
Fleur Vert @grenouille9
20 March, 06:02
In response Truth Seeker 4444 to his Publication

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
21 March, 10:02
In response Fleur Vert to her Publication
When storm systems move through one of our cloud seeding project areas, a solution containing a small amount of silver iodide is burned from ground-based generators or released from aircraft. Upon reaching the cloud, the silver iodide acts as a condensation nuclei to aid in the formation of snowflakes.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
21 March, 10:03
In response The Mac to his Publication
Silver nanoparticles are nanoparticles of silver of between 1 nm and 100 nm in size. While frequently described as being 'silver' some are composed of a large percentage of silver oxide due to their large ratio of surface to bulk silver atoms.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
21 March, 10:07
In response The Mac to his Publication
Light-enhanced
Plasmonic effects have been studied quite extensively. Until recently, there have not been studies investigating the oxidative catalytic enhancement of a nanostructure via excitation of its surface plasmon resonance. The defining feature for enhancing the oxidative catalytic ability has been identified as the ability to convert a beam of light into the form of energetic electrons that can be transferred to adsorbed molecules. The implication of such a feature is that photochemical reactions can be driven by low-intensity continuous light can be coupled with thermal energy.

The coupling of low-intensity continuous light and thermal energy has been performed with silver nanocubes. The important feature of silver nanostructures that are enabling for photocatalysis is their nature to create resonant surface plasmons from light in the visible range.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
The addition of light enhancement enabled the particles to perform to the same degree as particles that were heated up to 40 K greater. This is a profound finding when noting that a reduction in temperature of 25 K can increase the catalyst lifetime by nearly tenfold, when comparing the photothermal and thermal process.
10:08 PM - Mar 21, 2022
In response The Mac to his Publication
Only people mentioned by TheMac in this post can reply
The Mac @TheMac
21 March, 10:09
In response The Mac to his Publication
Superparamagnetic Fe3O4 nanoparticles (NPs)-based hyperthermia is a promising non-invasive approach for cancer therapy. However, the heat transfer efficiency of Fe3O4 NPs is relative low, which hinders their practical clinical applications. Therefore, it is promising to improve the magnetic hyperthermia efficiency by exploring the higher performance magnetic NPs-based hybrid nanostructures. In the current study, it presents a straightforward in situ reduction method for the shape-controlled preparation of magnetite (Fe3O4) silver (Ag) hybrid NPs designed as magnetic hyperthermia heat mediators. The magnetite silver hybrid NPs with core-shell (Fe3O4@Ag) or heteromer (Fe3O4-Ag) structures exhibited a higher biocompatibility with SMMC-7721 cells and L02 cells than the individual Ag NPs.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
21 March, 10:10
In response The Mac to his Publication
Importantly, in the magnetic hyperthermia, with the exposure to alternating current magnetic field, the Fe3O4@Ag and Fe3O4-Ag hybrid NPs indicated much better tumor suppression effect against SMMC-7721 cells than the individual Fe3O4 NPs in vitro and in vivo. These results demonstrate that the hybridisation of Fe3O4 and Ag NPs could greatly enhance the magnetic hyperthermia efficiency of Fe3O4 NPs. Therefore, the Fe3O4@Ag and Fe3O4-Ag hybrid NPs can be used to be as high performance magnetic hyperthermia mediators based on a simple and effective preparation approach.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396