The Mac @TheMac
25 February, 07:04
Which of you by taking thought can add one cubit unto his stature?

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
25 February, 07:08
In response The Mac to his Publication
The deep state are still going after Mr Trump?

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
25 February, 07:10
In response The Mac to his Publication
In quantum computing, a qubit (/ˈkjuːbɪt/) or quantum bit (sometimes qbit[citation needed]) is the basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
25 February, 07:11
In response The Mac to his Publication
Examples include: the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two states can be taken to be the vertical polarization and the horizontal polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of both states simultaneously, a property which is fundamental to quantum mechanics and quantum computing.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
25 February, 07:13
In response The Mac to his Publication
The deep still are still attempting to steal the souls of innocent children.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
25 February, 07:14
In response The Mac to his Publication
Optical computing or photonic computing uses photons produced by lasers or diodes for computation. For decades, photons have shown promise to enable a higher bandwidth than the electrons used in conventional computers (see optical fibers).

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
25 February, 07:15
In response The Mac to his Publication
Most research projects focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. This approach appears to offer the best short-term prospects for commercial optical computing, since optical components could be integrated into traditional computers to produce an optical-electronic hybrid.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
However, optoelectronic devices consume 30% of their energy converting electronic energy into photons and back; this conversion also slows the transmission of messages. All-optical computers eliminate the need for optical-electrical-optical (OEO) conversions, thus reducing electrical power consumption.
07:16 AM - Feb 25, 2021
In response The Mac to his Publication
Only people mentioned by TheMac in this post can reply
The Mac @TheMac
25 February, 07:16
In response The Mac to his Publication
Application-specific devices, such as synthetic aperture radar (SAR) and optical correlators, have been designed to use the principles of optical computing. Correlators can be used, for example, to detect and track objects, and to classify serial time-domain optical data.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
25 February, 07:18
In response The Mac to his Publication
The fundamental building block of modern electronic computers is the transistor. To replace electronic components with optical ones, an equivalent optical transistor is required. This is achieved using materials with a non-linear refractive index. In particular, materials exist where the intensity of incoming light affects the intensity of the light transmitted through the material in a similar manner to the current response of a bipolar transistor.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396