The Mac @TheMac
13 August, 11:52
Do the hospitals use quantum dot spectrometers at the pathology departments?

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
Waiting4Home Anon @Waiting4Home
13 August, 11:56
In response The Mac to his Publication
let us know if you find out.............

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
13 August, 12:04
In response Waiting4Home Anon to her Publication
Mass spectrometry-based assays have been increasingly implemented in various disciplines in clinical diagnostic laboratories for their combined advantages in multiplexing capacity and high analytical specificity and sensitivity. It is now routinely used in areas including reference methods development, therapeutic drug monitoring, toxicology, endocrinology, paediatrics, immunology and microbiology to identify and quantify biomolecules in a variety of biological specimens. As new ionisation methods, instrumentation and techniques are continuously being improved and developed, novel mass spectrometry-based clinical applications will emerge for areas such as proteomics, metabolomics, haematology and anatomical pathology. This review will summarise the general principles of mass spectrometry and specifically highlight current and future clinical applications in anatomical pathology.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
13 August, 12:07
In response The Mac to his Publication
Spectroscopy is carried out in almost every field of science, whenever light interacts with matter1. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems1,2,3,4,5,6,7,8,9,10,11,12,13. Current microspectrometer designs mostly use interference filters2,3,4,5 and interferometric optics3 that limit their photon efficiency, resolution and spectral range2,3.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots14,15,16,17. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle18: multiple spectral bands are encoded and detected simultaneously with one filter and one detector9,10,11,12, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum.
12:08 PM - Aug 13, 2022
In response The Mac to his Publication
Only people mentioned by TheMac in this post can reply
The Mac @TheMac
13 August, 12:08
In response The Mac to his Publication
We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396
The Mac @TheMac
14 August, 05:24
In response The Mac to his Publication
Thus, in simple words the spectrophotometer is based on the Beer-Lambert Law which states that the amount of light absorbed is directly proportional to the concentration of the solute in the solution and thickness of the solution under analysis

Notice: Undefined index: tg1tga_access in /home/admin/www/anonup.com/themes/default/apps/timeline/post.phtml on line 396